Acta Crystallographica Section E

Structure Reports
 Online

2-[4-(2-Formyl-6-methoxyphenoxy)butoxy]-3-methoxybenzaldehyde

ISSN 1600-5368

Chun-Hua Diao,* Zhi Fan, Ming Yu, Xin Chen and Zuo-Liang Jing

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail:
diao_chunhua@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.114$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$, comprises two o-vanillin subunits covalently linked to a central butyl chain; the molecule lies on an inversion center. The dihedral angle between the bridging butyl group and the plane through the aromatic ring is $7.13(14)^{\circ}$, indicating the overall planarity of the molecule. The molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The ability of crown ethers to act as effective complexing agents for cations is well established (Pedersen, 1967) and represents a field of great chemical and biological significance. Consequently, significant effort has been devoted to the creation of derivatives that exhibit special affinity for specific guests (Katritzky et al., 1996). As part of our interest in the molecular and ionic recognition of crown ethers, we report the synthesis and structure of the title compound, (I), used as a precursor in the preparation of crown ethers.

(I)

Molecule (I) (Fig. 1 and Table 1) is disposed about a crystallographic center of symmetry located at the mid-point of the $\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$ bond [symmetry code: (i) $-x, 2-y,-z$]. Each o-vanillin group ($\mathrm{C} 1-\mathrm{C} 7 / \mathrm{O} 1 / \mathrm{O} 2$) is planar, with an r.m.s. deviation of $0.019 \AA$ and, from symmetry, the aromatic rings are parallel. Overall, the molecule is effectively planar as seen in the dihedral angle formed between the linking group and the o-vanillin residue of $7.13(14)^{\circ}$. This observation is in contrast to the value of $55.80(17)^{\circ}$ reported recently for the closely related species 3 -ethoxy-4-[4-(2-ethoxy-4-formyl-phenoxy)-butoxy]benzaldehyde (Han \& Zhen, 2005).
A weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is noted in the structure $[\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3: \mathrm{H} 3 \cdots \mathrm{O} 3=2.55 \AA, \mathrm{C} 3 \cdots \mathrm{O} 3=$ 3.427 (3) \AA and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3=157^{\circ}$; symmetry code: $1+x$, $\left.\frac{3}{2}-y, \frac{1}{2}+z\right]$ which helps to consolidate the crystal packing (Fig. 2).

Experimental

To a solution of 2-hydroxy-3-methoxybenzaldehyde (15.2 g , 100 mmol) and potassium carbonate ($13.8 \mathrm{~g}, 100 \mathrm{mmol}$) in aceto-

Received 31 October 2005 Accepted 4 November 2005 Online 10 November 2005

organic papers

nitrile (500 ml), 1,4-dibromobutane ($10.8 \mathrm{~g}, 50 \mathrm{mmol}$) was added dropwise over 30 min . The mixture was refluxed for 24 h under nitrogen. The solvent was removed and the resultant mixture poured into ice-water $(500 \mathrm{ml})$. The white precipitate was isolated and recrystallized from ethanol solution to give the pure compound in 52% yield. Colorless single crystals were obtained by slow evaporation of an acetonitrile solution of (I).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \\
& M_{r}=358.38 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.068(4) \AA \\
& b=16.068(9) \AA \\
& c=7.745(4) \AA \\
& \beta=93.171(10)^{\circ} \\
& V=878.1(8) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
D_{x}=1.355 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1571 reflections
$\theta=2.5-24.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.22 \times 0.16 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.967, T_{\text {max }}=0.988$
4812 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.114$
$S=1.02$
1774 reflections
119 parameters
H -atom parameters constrained

Figure 1
The structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level. [Symmetry code (i): $-x, 2-y,-z$.]

Figure 2
Intermolecular hydrogen-bonding interactions (dashed lines) in (I).

References

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Han, J.-R. \& Zhen, X.-L. (2005). Acta Cryst. E61, o3844-o3845.
Katritzky, A. R., Belyakov, S. A. \& Sorochinsky, A. E. (1996). J. Org. Chem. 61, 7585-7592.
Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL97. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

